Verification of Scenario-based Specifications using Templates

Girish Keshav Palshikar ¹ Purandar Bhaduri ²

Tata Research Development and Design Centre (TRDDC),
54B, Hadapsar Industrial Estate, Pune 411013, India.

Abstract
Specifying dynamic behaviour of a system by listing scenarios of its interactions has become a popular practice. Message sequence chart (MSC) is a rigorous and widely used notation for specifying such scenarios of system behaviour. High-level MSCs (HMSC) provide hierarchical and modular composition facilities for constructing complex scenarios from basic MSCs. Although the general problem of formal verification of properties of HMSCs is intractable, we propose a framework for restricted verification. We present simple templates for commonly used types of properties and discuss efficient algorithms for verifying them.

Key words: Scenario-based Specifications, Message Sequence Charts, Formal Verification, Formal Methods.

1 Introduction
It is important to clearly and precisely state the behavioural requirements when building practical business systems as well as safety-critical real-time, embedded systems (e.g., see our railway system [23]). It is not always easy to communicate dynamic behavioural requirements of a system to the end-users in an easy-to-understand non-mathematical manner, particularly in the early stages of requirements analysis, where the requirements need to be high-level and abstract (removed from design and implementation issues). A simple and intuitive way to describe a system is to list various examples or scenarios of its intended behaviour. At the highest level of abstraction, a scenario describes a set of interactions of the system with its environment and other external systems. An interaction includes entities (including system components) that participate in it and event occurrences. An interaction scenario often stands for a set of possible event sequences (episodes). Each interaction scenario is

¹ Email: girishp@pune.tcs.co.in
² Email: pbhaduri@pune.tcs.co.in

©2003 Published by Elsevier Science B. V.
typically classified as either desirable (sunny day) or undesirable (rainy day). Ideally, an implementation should meet all sunny day interaction scenarios and none of the rainy day ones.

There is a need for simple, expressive, intuitive, graphical and standardised notations to specify interaction scenarios of systems. Message sequence chart (MSC) is just such a simple, visual and mathematically rigorous notation [25,13]. MSCs have been used widely in the telecom domain and are also increasingly being used in many other applications [23]. The sequence diagram and use case notations in UML are semantically and visually close to the MSC notation [12,11,20,8]. The ITU standard for MSC [14] includes a mathematical semantics for it. Other researchers have provided mathematical semantics for MSCs using formalisms such as transition systems, process algebras etc. [16,19,18,9]. In this paper, we use the partial order semantics given by Alur et al [2]. The main use of a formal semantics for a notation is that it can be used to design formal verification and analysis algorithms. For example, a specification written using MSCs can be analysed to detect various problems such as missing scenarios and race conditions. Formal verification algorithms can be designed which check whether a given specification written using MSCs satisfies a given property written in a suitable formal notation [2,1,24,17,4,21,22,5]. Model-checking tools have also been applied for formal verification of MSCs [3,10].

This paper presents a set of restricted simple property templates and formal verification algorithms to check whether a given High-level MSC (HMSC) satisfies the given property. Since the general problem of formal verification of HMSC specification is intractable when the property is specified in temporal logic or equivalent notations, following [7,15,5], we restrict the kinds of properties that can be specified and give specialised algorithms for formal verification of properties specified using each template. We present a compromise wherein we sacrifice expressiveness for efficient verification. The MSC notation has been extended in several ways (e.g., [26]); here we focus on the core aspects of the MSC and HMSC notation only.

Section 2 presents an overview of HMSC notation and its formal semantics. Section 3 discusses our approach of property templates and algorithms to verify them. Section 4 provides conclusions and further work.

2 HMSC Semantics

We assume familiarity with basic MSC notation and its partial order (linear time) semantics [2] (see Appendix A for an overview). Here we summarise the relevant definitions for MSC-graphs and HMSC.
2.1 Linear Time Semantics of MSC Graphs

An MSC graph is essentially a directed (not necessarily acyclic) graph in which each vertex refers to a basic MSC.

Definition 2.1 An MSC graph G is a tuple $(V, \rightarrow, v^I, v^T, \mu)$ where V is a finite set of vertices, \rightarrow is a binary relation over V (each element of \rightarrow is a directed edge in G), v^I is the initial vertex, v^T is the terminal vertex and μ is a labelling function that maps each vertex to a basic MSC m.

Definition 2.2 The partial order associated with the asynchronous concatenation of two basic MSCs m_1 and m_2 having the same set of instances is the partial order \leq_{m_1,m_2} on locations(m_1) \cup locations(m_2) given by the transitive closure of the following relation:

\[
\leq_{m_1} \cup \leq_{m_2} \cup \{(i, l_1)_{m_1}, (i, l_2)_{m_2} | (i, l_1) \in \text{locations}(m_1) \wedge (i, l_2) \in \text{locations}(m_2)\}
\]

where locations(m) is the set of locations (events) in basic MSC m and \cup is the operator for disjoint union of two sets. Each location is denoted by a tuple $<i, l>$ where i is the unique ID for an instance and l is the ID for the event within the visual order of the instance i.

Figure 1 shows an MSC graph (initial vertex and terminal vertex are not shown, initial vertex connects to $v0$ and vertices $v2$, $v3$ connect to the terminal vertex). There are an infinite number of paths from the initial to the terminal vertex in this MSC graph (due to the loop in it); e.g., $<v0, v1, v3>$, $<v0, v1, v0, v1, v3>$, $<v0, v1, v0, v1, v0, v1, v3>$ etc. The idea in the semantics of MSC graph is to construct a partial order for each such finite path in the MSC graph, by asynchronously concatenating the partial orders of the basic MSCs occurring in the path. Figure 1 also shows the precedence graph for walk $<v0, v1, v0, v1, v3>$ in the MSC graph; this graph is obtained by asynchronously concatenating the basic MSCs for $v0, v1, v0$ and $v3$. Dotted lines show the edges in the precedence graph added due to Definition 2.2; we omit the edges entailed by transitive closure. Note that the locations (events) are renamed in different instance of $v0$ (and $v1$) in the walk (due to the disjoint union).

Definition 2.3 The semantics of an MSC graph G is the set of all finite and infinite runs obtained by (i) asynchronously concatenating each basic MSC along each walk in G and (ii) taking the disjoint union over all walks, both finite and infinite, of the set of runs obtained from the partial orders in (i).

Since the set of walks in an MSC graph may be infinite (if it has loops), the set of runs is also infinite. The problem of deciding whether a given MSC-graph satisfies a given property P (where P is specified as an automaton) is undecidable [3].
2.2 Linear Time Semantics of HMSC

Essentially, an HMSC is a hierarchical (multi-level) graph whose nodes are either basic MSCs or another HMSC, thus allowing for nesting of graphs.

Definition 2.4 A high-level message sequence chart (HMSC) \(H \) is a tuple \((N, B, v^I, v^T, \mu, E) \) where \(N \) is a finite set of nodes, \(B \) is a finite set of boxes (or supernodes), \(v^I \in N \cap B \) is the initial node or box, \(v^T \in N \cap B \) is the terminal node or box, \(\mu \) is a labelling function that maps each node in \(N \) to a basic MSC and each box in \(B \) to an already defined HMSC, and \(E \) is the set of edges that connect the nodes and boxes to each other.

We omit some HMSC features in the MSC standard such as conditions and inline expressions. What is the meaning of an HMSC \(H \)? First, an HMSC is flattened into an MSC-graph, obtained by recursively substituting a box by the corresponding HMSC. The meaning of an HMSC is then the set of all possible finite or infinite runs of this flattened MSC-graph [3]; here it is required that the nesting of HMSCs is not mutually recursive, i.e., if a node of an HMSC \(H \) is labelled with another HMSC \(H' \), then a node of \(H' \) cannot be labelled with \(H \) (or with any HMSC that refers to \(H \)).
3 HMSC Verification

Given an HMSC H and a property P about the runs of H, the verification problem is to decide whether or not all runs of H satisfy P. P is typically stated using temporal logic like LTL or CTL, an automaton or a template MSC. A na"ive verification algorithm would examine some or all runs of H to decide whether or not H satisfies P. The general problem of deciding whether a given MSC-graph satisfies a given property P (where P is specified as an automaton) is undecidable[3]. However, we consider some special classes of properties below and present efficient verification algorithms for such properties. Following [7,15,5], we assume that the properties fall into various pre-defined templates, thus sacrificing generality for ease of use and efficiency of verification. The properties are stated in terms of the relative ordering of events in the runs of the input HMSC. Although the property templates cannot express all the properties that may be of interest in practice, they do cover broad classes of typical properties. Moreover, we present efficient graph-theoretic algorithms (based on linear time semantics of HMSCs) to verify properties stated using these templates.

Every internal event in an HMSC has a unique ID specified by the unique location in the basic MSC in which it occurs. A user-defined event E corresponds in general to a non-empty finite set $\gamma(E)$ of internal events in an HMSC. The properties are specified in terms of user-defined events and their negations. We say that a user-defined event occurs when any of the internal events corresponding to it occur. If a user-defined event E stands for a finite set $\{e_1, \ldots, e_k\}$ of internal events, the negative event $\text{not}(E)$ stands for $\text{not}(e_1) \land \ldots \land \text{not}(e_k)$. In Figure 1, a user event “$P2$ sends message _ to $P1$” (underscore _ stands for “don’t care”) corresponds to the two internal events: “$P2$ sends approve to $P1$” (in basic MSC v2) and “$P2$ sends fail to $P1$” (in basic MSC v1).

3.1 Tracing

A tracing property asserts the occurrence of a sequence of events in the specified order in all runs or in at least one run of the input HMSC H. The template for the property is shown below. The terms in bold are given by the user and the terms in bold separated by slashes are alternatives, one of which is chosen by the user. Each u_i is a user-defined event or its negation.

| The sub-sequence of events $X = [a_1, a_2, \ldots, a_k]$ occurs in some / all runs of HMSC H |

Definition 3.1 Let H be an MSC-graph and let $\sigma = u_0, u_1, u_2, \ldots$ be a run of H, where each u_i is an internal event in some MSC M in H. A positive user-defined event $a = \{e_1, \ldots, e_n\}$ occurs in σ if there is some event $e \in a$ and some $u_i (i \geq 0)$ in σ such that $u_i = e$. A negative user-defined event $\text{not}(a)$,
where a is a positive user-defined event $a = \{e_1, \ldots, e_n\}$ occurs in σ if a does not occur in σ i.e., if there is no $e \in a$ and there is no u_i ($i \geq 0$) in σ such that $u_i = e$.

The concept of a user-defined event occurring in a run can be generalised for a sequence $X = [a_1, a_2, \ldots, a_n]$ of (positive or negative) user-defined events by means of the inductive Definition 3.2.

Definition 3.2 Let H be an MSC-graph and $\sigma = u_0, u_1, u_2, \ldots$ be a run of H, where each u_i is an internal event in some MSC M in H. A trace $X = [a_1, a_2, \ldots, a_n]$ of (positive or negative) user-defined events occurs in σ if x is a prefix of σ, where $\sigma = x \bullet y$, such that a_1 occurs in x and the remaining trace $[a_2, \ldots, a_n]$ occurs in the remaining run y. Here, \bullet is the concatenation operation on sequences.

Suppose that all events in X are positive user-defined events. Then X occurs in a given finite or infinite run σ of an HMSC H if there is a sequence of internal events $B = \langle b_1, \ldots, b_k \rangle$ such that $b_i \in a_i$ and B occurs as a sub-sequence within σ. The sub-sequence B need not be contiguous in σ i.e., there may be other events between b_i and b_{i+1} in σ. Now suppose one or more a_i's in X are negative user-defined events. Then X occurs in a given finite or infinite run σ of an HMSC H if there is a sequence of internal events b_1, \ldots, b_n (where n = number of positive user-defined events in X) such that (i) each b_i is in a positive user-defined event in X (in the order in which they occur in X) and (ii) B is a sub-sequence within σ and (iii) for every pair b_i and b_{i+1} in B such that $b_i \in a_p$ and $b_{i+1} \in a_q$, no internal event from any negative user-defined events between a_p and a_q occurs between b_i and b_{i+1} in σ.

For example, the following property checks if there is any run in the HMSC of Figure 1 where $P1$ sends a connect message but $P1$ does not receive an approve message after that. A chief difficulty in checking tracing properties is that the runs of H may be infinite.

The sub-sequence of events $X = [\text{“P1 sends connect to } _\text{”}]$,
not(“P1 receives approve from _\text{”}) occurs in some runs of HMSC H.

The sequence X may include some cycles or repetitions, as shown below.

The sub-sequence of events $X = [\text{“P1 sends connect to } _\text{”}]$,
\text{“P1 receives fail from } _\text{”}, \text{“P1 sends connect to } _\text{”}]$
occurs in some runs of HMSC H.

For simplicity, we assume that X does not include any negative user-defined events. Let H be an HMSC and let S be the set of basic MSCs that occur in the MSC-graph obtained by flattening H. For a given internal event e, let $\phi(e)$ denote the set of basic MSCs from S in which e occurs (clearly $\phi(e) \neq \emptyset$ and $\phi(e) \subseteq S$); e.g., $\phi(\text{“P2 sends } _\text{ to P1”}) = \{v1, v2\}$. Recall that a positive user-defined event E stands for a finite set $\gamma(E) = \{e_1, \ldots, e_p\}$ of
internal events. Then the function ϕ can be extended to a user defined event E as: $\phi(E) = \bigcup_{e \in E} \phi(e) = \phi(e_1) \cup \ldots \cup \phi(e_p)$. Here, $\phi(E)$ denotes the set of basic MSCs in H, which contains at least one internal event corresponding to the user-defined event E. We need some more definitions.

Definition 3.3 Let H be an MSC-graph over a set S of basic MSCs. Then a sequence $w = < M_1, M_2, \ldots, M_m >$ of basic MSCs in S is called feasible trace of H if (i) there is a directed path from initial node to M_1 and (ii) from each M_i to M_{i+1} for $1 \leq i < m$ and (iii) from M_m to terminal node of H. Specifically, (ii) needs to hold even if $M_i = M_{i+1}$ for any i, in which case there must be a non-empty directed path from M_i to itself (i.e., M_i should be reachable from itself via a non-empty directed path).

Definition 3.4 Let $\beta = < e_1, e_2, \ldots, e_k >$ be a sequence of positive internal events in a set of basic MSCs S in an MSC-graph H. Let $w = < M_1, M_2, \ldots, M_m >$ be a feasible trace of H. Then a function f partitions β among w if (i) $f(M) = \beta$ if w consists of a single MSC M and $\beta \in \phi(\beta)$; and (ii) if $w = < M_1 > \cdot < M_{i+1}, \ldots, M_m >$ then $f(M_i)$ is a proper prefix x of β (where $\beta = x \cdot y$), $M_i \in \phi(x)$ and f partitions y among $< M_{i+1}, \ldots, M_m >$.

In Figure 1, $w = < v_1, v_3 >$ is a feasible trace of H. Also, a function $f = \{ v_1 \mapsto < r_fail_p1, r_report_p3 >, v_3 \mapsto < s_req_service_p1 > \}$ partitions $\beta = < r_fail_p1, r_report_p3, s_req_service_p1 >$ among w. Note that f associates a non-empty subsequence of β with every basic MSC in w. A simple algorithm can be designed to construct a function f that partitions given β among w; such an f is unique for given w, β because every event in β is an internal event, which belongs to a unique basic MSC in S.

Algorithm 1 (hmsc_tracing.a) to check properties stated using the tracing template is as follows (we assume the option **some** is chosen). We systematically select a permutation β of internal events from X, form a candidate feasible trace w in H which partitions β through a function f and efficiently check whether β occurs in some linearization of the precedence relation corresponding to the asynchronous concatenation of basic MSCs in w. The feasible traces have a length of at most k and hence are finite in number.

For the second property above, $X = [a_1, a_2, a_3]$ where $a_1 = "$P1 sends connect to $", a_2 = "$P1 receives fail from $", a_3 = "$P1 sends connect to $". $\phi(a_1) = \phi(a_3) = \{v_0\}$, $\phi(a_2) = \{v_1\}$ and $\gamma(a_1) = \gamma(a_3) = \{s_connect_p1\}$, $\gamma(a_2) = \{r_fail_p1\}$. There is only one possible $\beta = < e_1, e_2, e_3 >$ where $e_1 = s_connect_p1$, $e_2 = r_fail_p1$, $e_3 = s_connect_p1$. Thus $w = < M_1, M_2, M_3 >$ where $M_1 = v_0$, $M_2 = v_1$, $M_3 = v_0$ is a feasible trace of H and the function $f = \{ M_1 \mapsto < s_connect_p1 >, M_2 \mapsto < r_fail_p1 >, M_3 \mapsto < s_connect_p1 > \}$ partitions β among w. This choice of β, w and f clearly satisfies the inner for loops; hence the property is satisfied. Clearly, the following property is not satisfied by the HMSC in Figure 1.
Algorithm 1 `hmse_tracing_a`

Input HMSC H; \{actually H is the flattened MSC-graph for an HMSC\}

Input $X = [a_1, \ldots, a_k]$ \{finite sequence of positive user-defined events\}

Output `true` if X occurs in some run of H; `false` otherwise

Let $S =$ the set of all basic MSCs in H;

Let $\phi(a_i) =$ the set of basic MSCs for user-defined events a_i;

Let $\gamma(a_i) =$ the set of internal events in user-defined event a_i;

for every sequence $\beta = \langle e_1, e_2, \ldots, e_k \rangle$ where $e_i \in \gamma(a_i)$ do

for every feasible trace $w = \langle M_1, M_2, \ldots, M_a \rangle$, $1 \leq a \leq k$,
of basic MSCs from S such that a function f partitions β among w do

ok = `true`;

\{
\text{do for every MSC in } w
\}

for ($x = 1$; ok == `true` \&\& $x \leq a$; $x++$) do

for ($j = 2$; ok == `true` \&\& $j \leq |f(M_x)|$; $j++$) do

\{
$R_M =$ precedence order for MSC M
\}

if precedes($R_{M_x}, f(M_x)_j, f(M_x)_i$) then

ok = `false`;

break;

end if

end for

end for

end for

if ok == `true` then

return(`true`);

end if

end for

end for

return(`false`);

The sub-sequence of events $X = ["P1 sends req_service to ",

"P1 sends connect to "]$ occurs in some runs of HMSC H.

The complexity of the Algorithm 1 is easily seen to be $O(A^k \cdot m^k)$ where A is the maximum number of internal events corresponding to any event a_i in X (i.e., $A = \max\{\gamma(a_i)\}$), m is the number of basic MSCs in H and k is the number of events in X. To reduce the complexity, we enforce an upper bound of $k=10$, which means that one can use up to 10 user-defined events to state the tracing property, which is acceptable in practice. The earlier work reported in [5] presents a similar algorithm for basic MSCs and its analysis. The algorithm is efficient and does not explicitly check all possible finite linearizations of H. Clearly, the approach works even when there are repetitions in X. The algorithm can be modified for the situations (a) when X contains negative user-defined events; and/or (b) the option all runs is chosen.
in the template. For better use in practice, we have extended this approach to provide additional options such as packed subsequences, position of the tracing (only at the beginning, only at the end or anywhere) within the linearization etc.

3.2 Consequence

Another useful kind of property is specified using the following template. Here $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_n\}$ are given sets of user-defined events or their negations.

<table>
<thead>
<tr>
<th>Each / An / All events from X leads to an / all events from Y in all runs of HMSC H</th>
</tr>
</thead>
</table>

For example, in Figure 1, the following property states that each occurrence of P_1 sending a connect message is followed by P_1 receiving either fail or approve message in every run.

| An events from \["P_1 sends connect to _"\] leads to an events from \["P_1 receives fail from _", \ "P_1 receives approve from _"\] in all runs of HMSC H |

As another example, in Figure 1, the following property states that each occurrence of P_1 sending a connect message or P_1 receiving a fail message is followed by either P_1 receiving an approve message or P_1 sending a req_service message in every run.

| Each events from \["P_1 sends connect to _", \ "P_1 receives fail from _"\] leads to an events from \["P_1 receives approve from _", \ "P_1 sends req_service to _"\] in all runs of HMSC H |

For simplicity, we again assume that X,Y do not include any negative user-defined events. Given a set of sets X, we use $\bigcup X$ to denote the union of the sets in X; e.g., $\bigcup\{\{a,b\}, \{a,c\}\} = \{a,b,c\}$. The meaning of this property template is as follows:

- **Property pattern**: An event from X leads to an event from Y in all runs of HMSC H. **Meaning**: Is it true that for every run σ of H, if there exists some internal event $x \in \bigcup X$, then there exists some internal event $y \in \bigcup Y$ such that the sequence $x \cdot y$ (obtained by concatenating x and y) is a sub-sequence (tracing) of σ?

- **Property pattern**: An event from X leads to all events from Y in all runs of HMSC H. **Meaning**: Is it true that for every run σ of H, if there exists some internal event $x \in \bigcup X$ then some ordered permutation $Y'1$ of internal events in $\bigcup Y$ exists such that the sequence $x \cdot Y'1$ is a sub-sequence (tracing) of σ?

- **Property pattern**: Each event from X leads to an event from Y in all
runs of HMSC H. **Meaning:** Is it true that for every run σ of H, and for every user event $a \in X$, if there exists some internal event $x \in a$ then there exists some internal event $y \in \bigcup Y$ such that the sequence $x \bullet y$ is a sub-sequence (tracing) of σ?

- **Property pattern:** Each event from X leads to all events from Y in all runs of HMSC H. **Meaning:** Is it true that for every run σ of H and every user event $a \in X$, if there exists some internal event $x \in a$ then there exists some ordered permutation Y_1 of internal events in $\bigcup Y$ such that the sequence $x \bullet Y_1$ is a sub-sequence (tracing) of σ?

The meaning is defined similarly when the first “all events” option is chosen. We illustrate the approach by an algorithm to verify the second consequence property pattern listed above.

Definition 3.5 Let H be an MSC-graph. Let A be a positive user-defined event in H and let B be a collection of positive user-defined events in H. We say that A must be followed by some event in B, denoted $A \leadsto B$, if for every finite run $\sigma = e_1, e_2, \ldots$ of the MSC graph H, if some internal event $a \in A$ occurs in σ (i.e., $e_i = a$ for some $i \geq 1$) then (i) there is some event $b \in \bigcup B$ such that $e_j = b$ for some $j > i$ (i.e., a is followed by b); and (ii) $A \leadsto B$ is true in the remaining run $e_{i+1}, e_{i+2}, \ldots, e_{j-1}, e_{j+1}, \ldots$ of σ.

Remarks:

- If no event from A occurs in some run of an HMSC H then $A \leadsto B$ is vacuously true for that run.

- If two internal events e_1 and e_2 belong to the same bMSC (i.e., $\phi(e_1) = \phi(e_2) = M$) then $\{e_1\} \leadsto \{\{e_2\}\}$ iff e_1 precedes e_2 in the precedence order of M.

For example, in Figure 1, it is easy to see that $\{"P1\ send\ connect\ to\ P2"\} \leadsto \{"P2\ send\ approve\ to\ P1","P2\ send\ fail\ to\ P1"\}.$

Proposition 3.6 Let H be an MSC-graph, let A be a positive user-defined event and let B be a non-empty collection of positive user events over H. Then $A \leadsto B$ if and only if for every internal event e_1 in A, there exists an internal event e_2 in $\bigcup B$ with $\phi(e_1) = M_1, \phi(e_2) = M_2$, such that the following holds:

- if $M_1 = M_2 = \text{some bMSC } M$ then e_1 precedes e_2 in the partial order associated with M; or

- if $M_1 \neq M_2$ then
 (i) M_1 is reachable from the start vertex of H, and
 (ii) M_2 is reachable from M_1, and
 (iii) the end vertex of H is reachable from M_2, and
 (iv) every directed path from the start vertex of H to the end vertex of H that passes through M_1 also passes through M_2 after M_1.

The following Algorithm 2 implements Proposition 3.6 to check whether a given vertex u is always followed by another vertex v in a graph G, with respect to special given start and end vertices in G. The algorithm essentially performs a recursive depth-first traversal of the graph G starting at u and backtracking when reaching any vertex in L. The global array $visited$ of Boolean flags marks vertices already visited.

Algorithm 2

```
Algorithm 2 must_followed_by

| Global Boolean visited[|V|]; {initially each vertex in $V$ is unvisited} |
|--------------------------|-----------------------------|
| **input** Graph $G = (V, E)$; |
| **input** start, end, $u \in V$; {$u \neq start, u \neq end$} |
| **input** $L \subseteq V \setminus \{start, end, u\}$; |
| **output** true if $u$ is always followed by at least one vertex in $L$ on any path from start to end through $u$; false otherwise |
| {assumed: $u$ is reachable from start and end is reachable from $u$} |
| $visited[u] = true$; {mark $u$ as visited} |
| for every vertex $w$ adjacent to $u$ do |
| if ($visited[w] || w == start || w \in L$) then |
| continue |
| end if |
| if ($w == end$) then |
| return(false); {u not always followed by a vertex in $L$} |
| end if |
| $visited[w] = true$; {mark $w$ as visited} |
| if (must_followed_by($G, start, end, w, L$) == false) then |
| return(false); |
| end if |
| end for |
| return(true); |
```

The complexity of Algorithm 2 is clearly the same as depth-first graph traversal viz. $O(|V| + |E|)$. The Algorithm 3 for the consequence property (where the second consequence property pattern listed above is chosen) is as follows.

If each user-defined event in the set Y contains at most N internal events then the algorithm explicitly checks $N^{|Y|}$ combinations. We manage this exponential complexity by putting an upper limit on the number of events in Y (e.g., $|Y| \leq 10$), which is satisfactory in practical situations. The earlier paper [5] presents similar algorithms for basic MSCs and their analysis. Again, the algorithm is efficient and does not explicitly check all possible finite linearizations of H. The algorithm can be modified when X or Y contain negative user-defined events. In addition to tracing and consequence, we have defined other templates to specify more varieties of properties, such as precedence.
Algorithm 3 \textit{hmsc_consequence}_b

\begin{verbatim}
input HMSC \(H\); \{actually \(H\) is the flattened MSC-graph for an HMSC\}
input finite non-empty sets \(X, Y\) of positive user-defined events in \(H\)
output true if for all runs \(\sigma\) of \(H\), there exists an internal event \(x\) in \(\bigcup X\)
and some permutation \(Y_1\) of internal events in \(\bigcup Y\) such that \(\sigma\) contains \(x \cdot Y_1\) as a sub-sequence (tracing); false otherwise
\{\(\gamma(a)\) denotes the set of internal events in user-defined event \(a\)\}
for \((i = 1; i \leq |X|; i++)\) do
{check every internal-event in \(\bigcup X\)}
 for every internal event \(x \in \gamma(X[i])\) do
 {Is \(x\) followed by all elements of \(Y\) in some order in all runs of \(H\)?}
 for every combination \(L = < e_1, e_2, \ldots, e_{|Y|} >\) s.t. \(e_i \in \gamma(Y[i])\) do
 if \((\phi(x) == \phi(e_i)\) for every \(e_i \in L\)\) then
 if \((x\) precedes \(e_i\) for every \(e_i\) in \(L\))\) then
 return(true);
 end if
 else
 if \((must_followed_by(H, start_H, end_H, x, L))\) then
 return(true); \{\(x\) is the one\}
 end if
 end if
 end for
 end for
\{\(x\) is not followed by all elements of \(Y\)\}
end for
return(false);
\end{verbatim}

4 Conclusions and Further Work

The approach of specification of system behaviour by listing examples of its interactions is gaining widespread acceptance during the requirements analysis phase. Consequently, it is important to analyse scenario-based system specifications to detect errors early and to gain confidence in the system requirements. Message sequence charts and high-level message sequence charts provide a rigorous yet intuitive formalism for specifying such scenarios of system behaviour. HMSCs provide hierarchical and modular composition facilities for constructing complex scenarios from basic ones. Other notations like UML use cases and sequence diagrams have been given formal semantics in terms of HMSCs. Several techniques have been proposed for analysing scenarios specified by HMSC: race condition detection, missing scenario detection and formal verification. Although the general problem of formal verification of properties of HMSCs is intractable, in this paper, we proposed simple and intuitive templates for stating common types of properties and algorithms for verifying them.

For further work, we need to add more templates for expanding the kinds
of properties that can be specified. We can look at using a restricted linear temporal logic (or regular expressions) for stating properties of HMSCs. The approach certainly restricts the expressive power for stating properties of HMSCs but might gain in efficiency of verification algorithms. Verification of live sequence charts [6] or MSCs with timing properties [26] is also of considerable interest.

Acknowledgement

We thank the BMF Tool project team for implementing our ideas and providing valuable feedback. We appreciate the support and encouragement of Prof. Mathai Joseph throughout the duration of this work. The first author would like to thank Dr. Manasee Palshikar.

A Linear Time Semantics of Basic MSC Notation

A.1 The Basic MSC Notation

We present here only some essential features in the MSC notation; we omit features like actions, inline expressions and gates etc. In an MSC, entities stand for instances (or processes) and events typically represent sending and receiving of messages by processes - there are also other kinds of events such as those related to timers. The meanings of an instance and a message depend on the system being described. An instance does not necessarily stand for a computer program; it refers to some active agent or entity. A message does not necessarily represent an actual data message; it may refer to some kind of exchange of information. A message has a name and no further structure or details (in the simplest case). An MSC is not concerned with the actual mechanism or channels of the message transmission, except to assume that the messages are always delivered in the order without any loss or corruption. Further, the send is non-blocking i.e., the sender does not wait until the receiver receives the message.

Figure A.1 shows an MSC that depicts a simple interaction among 3 instances named valve, controller and pressure_gauge. Each vertical line for an instance denotes the events that happen within the instance; the topmost event is the earliest event (within the instance) and so on downwards in time. This temporal ordering of events for an instance is called its local order. The visual distance between the events within a local order is immaterial. In Figure A.1, the valve and pressure_gauge processes send their respective status to the controller using messages named status_close and status_high_pressure respectively. The controller then issues an open command to the valve using the message named cmd_open. Note that the MSC depicts only one scenario; many other scenarios are possible e.g., one where the valve is open, pressure is low and the controller issues command to close the valve. The MSC is enclosed
in a rectangular frame and has a name (\textit{Steam_Boiler} in this example).

The MSC notation allows one to avoid any particular ordering of a subset of events for a process, by using a construct called co-region. A co-region is indicated by a dotted line segment along the vertical line for the process and the events within this dotted line are unordered. Figure A.1 shows a co-region for \textit{controller} in which the \textit{controller} does not impose any order on the receipt of the \textit{status_close} message from \textit{valve} and \textit{status_high_pressure} message from \textit{pressure_gauge} (these messages may be received in any order).

Many scenarios relate message flows with timing constraints. It is possible to easily specify such scenarios in the MSC notation using three special events: timer set, timer reset and timeout. The \textit{timer set} event is denoted by an hourglass symbol connected to the timeline of a single process. The \textit{timer reset} event is denoted by a cross connected to the timeline of a process. The \textit{timeout} event is denoted by connecting the hourglass symbol of the timer to the process timeline by a bent line. Each timer has a unique name. Naturally, for each timer, the timer reset and timeout events must be preceded by the timer set event. In Figure A.1, the controller starts a timer $t1$ before waiting for the messages from \textit{valve} and \textit{pressure_gauge} instances. In this particular scenario, the \textit{controller} receives both the messages before the timeout and then resets the timer $t1$.

A condition is an informal descriptive mechanism in the MSC notation used to display a state or situation that must be reached by either a single instance or a group of instances. A condition is written as a text label within a hexagonal box, which is placed either on a single instance or across a group of instances. If a condition C is placed on a single instance P then the execution of P does not proceed to the next event (below the condition on the local order) until the condition is reached. That is, the condition C is a pre-requisite for the next event in the instance. If the condition C is placed across a group of instances P_1, \ldots, P_k, then all the k instances must achieve local states in which the condition C is satisfied; only after that state is reached, can any of the k
instances proceed further in their respective local orders. In such a case, the condition \(C \) can be thought of a synchronisation mechanism useful to ensure that the instances \(P_1, \ldots, P_k \) reach the same state before proceeding further. In Figure A.1, instances \textit{valve} and \textit{pressure gauge} share a condition called \textit{status available}; only when both these instances reach a state that satisfies this condition, can they proceed further with their local orders.

What exactly is the scenario specified by the basic MSC in Figure A.1? It may appear that the MSC represents only one sequence of events; in fact it represents several actual event sequences each of which captures the intended behaviour. To understand this clearly, we formally define the linear time semantics of a basic MSC.

\section*{A.2 Linear Time Semantics of Basic MSCs}

The MSC notation discussed so far is called a basic MSC to distinguish it from the HMSC defined later. We now formally define the linear time semantics of a basic MSC in terms of the associated partial order and the set of runs \([2, 6, 5]\).

With each instance \(i \) in a given basic MSC \(m \), we associate an ordered sequence \(0..l_{\text{max}}(m, i) \) of finite number of discrete locations, which are numbered from the top of the instance to the bottom. Each location on an instance \(i \) in basic MSC \(m \), denoted \(< i, l >_m \), is associated with an event, which may be sending or receiving of a message, a condition, or timer events set, reset, timeout. We drop the subscript \(m \) when the basic MSC is clear from the context. The semantics of a basic MSC \(m \) is defined in terms of the partial order \(\leq_m \) induced by \(m \) on the set of its locations \(< i, l >\). The partial order is obtained from the following precedence relation \(R_m \):

\begin{itemize}
 \item visual order along an instance line: \(< i, l > R_m < i, l + 1 >\) unless the two consecutive locations are in a co-region
 \item send of a message precedes its receipt: if \(< i, l >\) is a send event and \(< i', l' >\) is the corresponding receive event for the message, then \(< i, l > R_m < i', l' >\)
 \item shared condition induces synchronisation barrier: if locations \(< i, l >\) and \(< i', l' >\) refer to the same condition \(c \), then \(< i, l > R_m < i', l' + 1 >\)
 \item events within a co-region have no order among them: suppose \(< i, l >, < i, l + 1 >, \ldots, < i, l + k >\) are events in a co-region. If \(l > 0 \) (i.e., there is at least one event before the co-region) then \(< i, l - 1 > R_m < i, l >, < i, l - 1 > R_m < i, l + 1 >, \ldots, < i, l - 1 > R_m < i, l + k >\). Also, if \(k < l_{\text{max}}(i, m) \) (i.e., there is at least one event after the co-region) then \(< i, l > R_m < i, l + k + 1 >, < i, l + 1 > R_m < i, l + k + 1 >, \ldots, < i, l + k > R_m < i, l + k + 1 >\).
\end{itemize}

We assume that the basic MSC \(m \) is well-formed so that the relation \(R_m \) is acyclic. We call \(R_m \) the \textit{precedence relation} of the basic MSC \(m \). The partial order \(\leq_m \) is the reflexive transitive closure of \(R_m \).
Definition A.1 The semantics of a basic MSC m is the set of all runs (i.e., linearizations) of the partial order \leq_m.

This implies that we have interleaving semantics for concurrency: any two events that are incomparable in the partial order can happen in any order. Note also that each run of a basic MSC is a finite sequence of events and each basic MSC has only a finite number of such finite runs. The precedence graph in Figure A.2 depicts the precedence relation R_m among the locations (events) in the basic MSC of Figure A.1. The vertices of this precedence graph stand for events; there is a directed edge from event u to event v if u directly precedes v i.e., uR_mv. An event v cannot occur until all preceding events have occurred. If the MSC is well-formed then the corresponding precedence graph is a directed acyclic graph (DAG).

References

